Programa Dá Licença

Cineclube de Matemática e Estatística

As atividades do Cineclube são produtos de pesquisas no âmbito do Mestrado Profissional de Matemática (PROFMAT) do IME-UFF, orientadas pelo professor Humberto Bortolossi, que discutem o ensino de matemática na perspectiva de um novo formato de narrativa. Associadas aos vídeos, encontram-se propostas de atividades que exploram a aprendizagem de conceitos matemáticos.

  • Os vídeos selecionados estão disponíveis abaixo;
  • O material produzido em outro país encontra-se legendado em língua portuguesa;
  • As seções de cineclube estão presentes em eventos externos ou em eventos organizados pelo projeto Eventos em Educação Matemática do Programa Dá Licença, ou ainda, em atividades realizadas em escolas do ensino básico.

Catálogo de vídeos

Nas sinopses a seguir, o ícone  LEG  indica que o vídeo está disponível com legendas em Português. Há também uma indicação de recomendação de faixa etária de acordo com o tema matemático abordado. Assim, por exemplo, o ícone  5+  indica que o tema matemático é adequado para crianças com 5 anos ou mais.

A Coelha e o Cervo

A coelha e o cervo vivem felizes até que sua amizade é posta à prova pela obsessão do cervo em encontrar um caminho para a terceira dimensão. Depois de um acidente, o cervo se depara com um mundo até então desconhecido para ele. A partir daí, os dois personagens se veem separados, em diferentes dimensões. Como esta amizade resistirá?

Duração: 16 min.

 5+ 

Dimensões

Um passeio matemático… Um filme para todo público. Nove capítulos, duas horas de matemática, para descobrir progressivamente a quarta dimensão. Vertigens matemáticas garantidas!

Duração: episódios de ~15 min.

 10+  LEG 

Romanos

Neste curta-metragem divertido, Fábio Porchat interpreta um professor de matemática da Roma Antiga que tenta ensinar aos seus alunos como resolver uma equação matemática escrita com algarismos romanos.

Duração: ~3 min.

 10+  LEG 

Planolândia

Imagine viver em um mundo bidimensional onde os habitantes são polígonos que acreditam não haver nada além de seu mundo plano. Como mostrar que existe algo além: uma terceira dimensão? Como explicar essas noções para alguém que só sabe o que é direita e esquerda? Nesta animação você conhecerá a jornada de Artur Quadrado e sua neta Hex para convencer os planolandeses que seu universo é muito maior do que imaginavam.

Duração: ~24 min.

 10+  LEG 

Esferolândia

Esta história se passa na véspera da primeira missão para o Espaço Exterior de Planolândia, e apresenta os mistérios intrigantes de triângulos cujos ângulos somam mais do que 180 graus, levando o expectador a dimensões que, literalmente, não são desse mundo. Cheio de ação e humor, Esferolândia irá entreter e educar audiências de todas as idades.

Duração: ~24 min.

 10+  LEG 

O Prazer da Estatística

Este documentário, apresentado pelo Professor Hans Rosling, leva os expectadores a uma viagem emocionante pelo maravilhoso mundo da Estatística ao explorar o poder incrível que ela tem em mudar o nosso entendimento do mundo: controle de criminalidade, tradução automática do Google e astronomia são apens alguns exemplos entre os vários apresentados. Apesar do seu toque leve e espirituoso, o vídeo tem, no entanto, uma mensagem séria: sem Estatística, somos lançados à deriva num oceano de confusão de chuva de dados mas, com Estatística, podemos assumir o controle de nossas vidas, manter nossos governantes na linha e ver o mundo como ele realmente é.

Duração: 59 minutos 

 10+  LEG 

Isto é Matemática

Esta é uma série de vídeos que pretende, de uma forma simples e realista, apresentar a forma como a Matemática nos rodeia em grande parte da nossa vida. Os vídeos são promovidos pela Sociedade Portuguesa de Matemática e apresentados por Rogério Martins, Matemático e Professor Universitário.

Duração: episódios de ~10min.

 10+  

Derivadas

Dois jovens medalhistas da Olimpíada Brasileira de Matemática das Escolas Públicas e um dos mais proeminentes matemáticos do Brasil refletem sobre o espírito da matemática: um universo onde coexistem beleza, persistência e criatividade. Um filme de María Campaña Ramia.

Duração: 29 min.

 10+ 

Nada de Pânico - A Verdade sobre A População

Quantas pessoas há atualmente no mundo? O que pode acontecer, caso a população mundial continue a crescer no mesmo ritmo que cresce atualmente? Existe alguma relação entre renda familiar e tamanho das famílias? Escutamos falar sobre linha da pobreza, mas o que isso significa? Como é a distribuição de renda no mundo? Neste documentário, exibido pela BBC, o Professor Hans Roslings responde a estas perguntas de maneira clara e divertida e faz uma análise do mundo atual e de projeções otimistas.

Duração: 59 min.

 12+  LEG 

A Matemática é Descoberta ou Inventada?

A Matemática existiria se as pessoas não existissem? Criamos conceitos matemáticos para nos ajudar a entender o mundo que nos rodeia, ou é a matemática a língua nativa do próprio universo? Jeff Dekofsky traça alguns argumentos famosos nesta questão antiga e acaloradamente debatida.

Duração: ~6 min.

 12+  LEG 

A Matemática Inesperada em um Quadro de Van Gogh

O físico Werner Heisenberg disse: “Quando eu encontrar Deus, vou fazer-lhe duas perguntas: Por que relatividade? E por que turbulência? Eu realmente acredito que ele terá uma resposta apenas para a primeira pergunta.”. Apesar da dificuldade de se entender matematicamente a turbulência, podemos usar a arte para descrever a forma como ela parece. Natalya St. Clair ilustra como Van Gogh capturou este profundo mistério de movimento, fluidez e luz em seu trabalho.

Duração: ~5 min.

 12+  LEG 

A Matemática Poderosa da Alavanca

Arquimedes disse uma vez: “Deem-me um ponto de apoio e eu moverei a Terra.”. Enquanto a ideia de uma pessoa mover uma massa tão grande por conta própria pode parecer impossível, provavelmente você já deve ter visto esta ideia em ação em seu em um parque infantil em sua vizinhança. Andy Peterson e Zack Patterson usam uma gangorra para ilustrar as incríveis implicações e usos da alavanca.

Duração: ~5 min.

 12+  LEG 

A Verdadeira História do "Eureca!" de Arquimedes

Quando você pensa no momento “Eureca” de Arquimedes, você provavelmente imagina um homem em uma banheira, certo? Como veremos, existe muito mais neste história. Armand D’Angour nos conta a história da maior missão de Arquimedes – um enorme palácio flutuante encomendado por um rei – que o ajudou a encontrar Eureca.

Duração: ~5 min.

 12+  LEG 

Como Dobrar Papel Pode Levar Você até A Lua

Será que ao dobrar um pedaço de papel 45 vezes você consegue chegar até a Lua? Ao ver o que acontece quando dobreamos um pedaço de papel, perceberemos o incrível potencial do crescimento exponencial. Este vídeo vai deixar você com a vontade de pegar um pedaço de papel para ver quantas vezes você consegue dobrá-lo!

Duração: ~4 min.

 12+  LEG 

Explorando Outras Dimensões

Imagine um mundo bidimensional – você, seus amigos, tudo está em 2D. Eu seu livro de ficção de 1884, Edwin Abbott inventou este mundo e o chamou de Planolândia. Alex Rosenthal e George Zaidan tomam a premissa de Planolândia uma dimensão a mais, implorando-nos para considerar como veríamos dimensões diferentes das nossas e por que esta exploração pode valer a pena. 

Duração: ~5 min.

 12+  LEG 

Chuva de Dados

Há uma quantidade alucinante de dados flutuando em torno de nossa sociedade. Os físicos do CERN têm pensado em como armazenar e compartilhar os dados cada vez mais massivos que eles vêm coletando durante décadas – estimulando a globalização da Internet ao longo do caminho, enquanto “resolvem” o seu problema de grande quantidade de dados. Tim Smith apresenta o envolvimento do CERN com a grande quantidade de dados de cinquenta anos atrás até hoje.

Duração: ~6 min.

 12+  LEG 

O Que é O Paradoxo da Dicotomia de Zenão?

É realmente possível se deslocar de um lugar para o outro? O filósofo grego Zenão deu um argumento convincente de que todo movimento é impossível – mas onde está a falha em sua lógica? Colm Kelleher ilustra como resolver o paradoxo da dicotomia de Zenão.

Duração: ~5 min.

 12+  LEG 

A Matemática do Namoro On-Line

Quando duas pessoas se juntam em um site de namoro, eles são apresentados um ao outro de acordo com interesses compartilhados e de como eles respondem a uma série de perguntas pessoais. Mas como os sites calculam a probabilidade de um relacionamento bem-sucedido? Christian Rudder, um dos fundadores do popular site de namoro OKCupid, detalha o algoritmo usado.

Duração: ~8 min.

 12+  LEG 

Uma Maneira Esperta de Estimar Números

Você já tentou advinhar quantos doces há em uma jarra? Ou pensou em perguntas desafiadoras como: “Quantos afinadores de piano existem em Chicago?”. O físico Enrico Fermi era muito bom em problemas como estes – descubra neste vídeo como ele usou potências de 10 para fazer estimativas incrivelmente rápidas!

Duração: ~5 min.

 12+  LEG 

A Complexa Geometria do Design Islâmico

Na cultura islâmica, o design geométrico está em toda parte: você pode encontrá-lo em mesquitas, madraçais, palácios e casas particulares. E apesar da notável complexidade desses projetos, eles podem ser criados com apenas com um compasso para desenhar círculos e uma régua para fazer retas. Nesse vídeo, Eric Broug cobre o básico do design islâmico geométrico.

Duração: ~5 min.

 12+  LEG 

A História da Medição do Tempo

De onde veio o tempo? O que são os fusos horários e por que existem tantos deles? Saiba as respostas a estas perguntas e mais nesta jornada através da história do tempo: dos relógios de sol e ampulhetas aos relógios modernos.

Duração: ~4 min.

 12+  LEG 

Música e Matemática: O Gênio de Beethoven

Como é que Beethoven, que é celebrado como um dos compositores mais importantes de todos os tempos, escreveu muitas de suas canções mais amadas enquanto ficando surdo? A resposta está na matemática por trás de sua música. Natalya St. Clair emprega o “Moonlight Sonata” para ilustrar a forma como Beethoven foi capaz de transmitir emoção e criatividade usando a certeza da matemática.

Duração: ~3 min.

 12+  LEG 

A Vida Infinita de π

A razão do perímetro de um círculo pelo seu diâmetro é sempre a mesma: 3,14159 … e assim por diante (literalmente!) para sempre. Este número irracional, π, tem um número infinito de dígitos, por isso nunca vamos descobrir o seu valor exato, não importa o quão perto parecemos estar. Nesta animação, Reynaldo Lopes explica as diversas aplicações de π no estudo da música, nos modelos financeiros e até mesmo na densidade do universo.

Duração: ~4 min.

 12+  LEG 

Como A Matemática Guia Nossos Navios no Mar

Sem matemática, nossos ancestrais marítimos teriam alcançado o mundo? Grandes pensadores matemáticos e suas descobertas revolucionárias têm uma história incrível. Explore os primórdios dos logaritmos através da história da navegação, aventura e novos mundos.

Duração: ~5 min.

 12+  LEG 

Como Calcular O Valor Futuro do Seu Dinheiro

Todos nós já ouvimos a frase “Tempo é dinheiro”. Mas o que essas duas coisas realmente têm a ver um com o outro? Nessa animação, German Nande explica a matemática por trás das taxas de juros, revelando a equação que lhe permitirá calcular o valor futuro do seu dinheiro.

Duração: ~4 min.

 12+  LEG 

Como Medimos Distâncias no Espaço Sideral

Quando olhamos para o céu, temos uma visão plana, bidimensional. Então, como os astrônomos calculam as distâncias das estrelas e galáxias da Terra? Nesta animação, Yuan-Sen Ting nos mostra como as paralaxes trigonométricas, velas padrão e mais nos ajudam a determinar a distância de objetos a vários bilhões de anos-luz da Terra.

Duração: ~6 min.

 12+  LEG 

Como Provar Uma Teoria?

Euclides de Alexandria revolucionou a forma como a matemática é escrita, apresentada ou pensada, e introduziu o conceito de provas matemáticas. Descubra o que é preciso para passar de uma teoria ou ideia vaga para uma prova universalmente convincente.

Duração: ~5 min.

 12+  LEG 

De Quantos Modos Diferentes Você Pode Dispor Um Baralho com 52 Cartas?

Um baralho. Cinqüenta e duas cartas. Quantas possibilidades? Vamos por desta forma: toda vez que você pegar um baralho bem embaralhado, você estará segurando quase certamente um arranjo de cartas que nunca existiu e poderá não existir novamente. Nesta animação, Yannay Khaikin explica como os fatoriais nos permitem identificar o número exato (muito grande) de permutações em um baralho padrão de cartas.

Duração: ~4 min.

 12+  LEG 

Geometria, Física e Pizza

As pessoas adoram comer pizza, mas cada estilo de pizza tem uma consistência diferente. Se você escolher o “estilo New York” (fino, plano e grande), então você verá que além de saciar a sua fome, a pizza lhe deixará um pouco lambuzado também. Colm Kelleher esboça as propriedades científicas e matemáticas que fazem dobrar uma fatia de pizza a melhor alternativa … a usar um babador.

Duração: ~4 min.

 12+  LEG 

Como Tocar Seu Cubo Mágico como Um Piano

A matemática explica o funcionamento do universo, da física de partículas à engenharia e à economia. A matemática está estreitamente relacionada com a música e, também, com quebra-cabeças como o cubo mágico. Nesta animação, Michael Staff explica como a teoria de grupos pode nos ensinar a tocar um Cubo de Rubik como se fosse um piano.

Duração: ~5 min.

 12+  LEG 

Como Os Tradutores Automáticos Funcionam?

É possível existir um tradutor universal na vida real? Já temos muitos programas que afirmam ser capazes de levar uma palavra, frase ou livro inteiro em um idioma e traduzi-lo em quase qualquer outro. A realidade, no entanto, é um pouco mais complicada. Ioannis Papachimonas mostra como esses tradutores automáticos funcionam e explica porque eles muitas vezes ficam um pouco confusos.

Duração: ~5 min.

 12+  LEG 

Como Estatísticas Podem Ser Contraintuitivas

As estatísticas são persuasivas. Tanto é assim que as pessoas, organizações e países inteiros baseiam algumas das suas decisões mais importantes sobre os dados organizados. Mas qualquer conjunto de estatísticas pode ter algo escondido dentro dele, o que pode transformar os resultados completamente de cabeça para baixo. Nesta animação, Mark Liddell investiga o paradoxo de Simpson.

Duração: ~5 min.

 12+  LEG 

Como O Problema da Ponte de Königsberg Mudou A Matemática

Você teria dificuldade em encontrar a cidade medieval de Königsberg em qualquer mapa moderno, mas uma particular peculiaridade em sua geografia a tornou uma das cidades mais famosas da matemática. Dan Van der Vieren explica como a análise de caminhos peas sete pontes desconcertantes de Königsberg levou o famoso matemático Leonhard Euler a inventar um novo campo da matemática: a teoria dos grafos.

Duração: ~5 min.

 12+  LEG 

Como Visualizar Uma Parte por Milhão?

“Partes por milhão” é uma unidade científica de medição que conta o número de unidades de uma substância por um milhão de unidades de outra. Dado que não é fácil conceituar números muito grandes, pode ser difícil fazer nossos cérebros entender o que “uma parte por milhão” realmente significa. Neste vídeo, Kim Preshoff compartilha nove maneiras úteis para se visualizar este conceito.

Duração: ~3 min.

 12+  LEG 

Simetria e Química

Melhore sua compreensão das propriedades moleculares com este vídeo sobre a fascinante propriedade da quiralidade. Suas mãos são o segredo para entender a estranha semelhança entre duas moléculas que parecem quase exatamente iguais, mas não são imagens de espelho perfeito.

Duração: ~5 min.

 12+  LEG 

Os Segredos Matemáticos do Triângulo de Pascal

O triângulo de Pascal, que inicialmente pode parecer apenas uma pilha ordenada de números, é na verdade um tesouro matemático. Mas o que ele tem de tão especial para intrigar matemáticos em todo o mundo? Wajdi Mohamed Ratemi mostra como o triângulo de Pascal está cheio de padrões e segredos.

Duração: ~5 min.

 12+  LEG 

Pirâmides Populacionais: Poderosas Previsões do Futuro

As estatísticas populacionais são como bolas de cristal: quando examinadas de perto, podem ajudar a prever o futuro de um país (e dar pistas importantes sobre o seu passado). Usando dados de três países diferentes, Kim Preshoff explica como usar uma ferramenta visual chamada pirâmide populacional para ajudar políticos e cientistas sociais a darem significado às estatísticas populacionais.

Duração: ~5 min.

 12+  LEG 

Por Que A Concorrência Abre Suas Lojas Uma Perto das Outras?

Por que todos os postos de gasolina, cafés e restaurantes ficam concentrados em um lugar? Como duas lojas competem pelo mercado de venda de sorvete em uma pequena praia? Descubra como a teoria dos jogos e o Equilíbrio de Nash informam como proceder.

Duração: ~4 min.

 12+  LEG 

Por Que Abelhas Adoram Hexágonos?

As abelhas são algumas das melhores matemáticas da natureza. Não só elas conseguem “calcular” ângulos e compreender que a Terra é redonda, como também construir e viver em um dos projetos arquitetônicos mais matematicamente eficientes em torno: a colmeia. Zack Patterson e Andy Peterson mergulham na geometria muito inteligente das casas das abelhas.

Duração: ~4 min.

 12+  LEG 

Por Que As Tampas dos Bueiros São Redondas?

Por que a maioria das tampas de bueiro é redonda? Claro que isso as torna fáceis de rolar e deslizar em qualquer lugar de alinhamento. Mas há outra razão, mais atraente, que envolve uma propriedade geométrica peculiar de círculos e outras formas. Marc Chamberland explica as curvas de largura constante e o teorema de Barbier.

Duração: ~4 min.

 12+  LEG 

O Que Dá À Nota de Dólar O Seu Valor?

O valor do dinheiro é determinado pelo quanto (ou quão pouco) dele está em circulação. Mas quem toma essa decisão e como esta escolha afeta a economia em geral? Nessa animação, Doug Levinson faz uma viagem para o Federal Reserve dos Estados Unidos, examinando como as pessoas que trabalham lá visam equilibrar o valor do dólar para evitar inflação ou deflação.

Duração: ~4 min.

 12+  LEG 

O Universo É Inteiramente Matemático?

A Matemática é uma ferramenta poderosa para a Física. Será que ela pode ser usada para explicar tudo o que existe no universo? Inclusive a fofura das ovelhas?

Duração: ~3 min

 12+  LEG 

Qual É A Diferença entre Exatidão e Precisão?

Quando medimos as coisas, a maioria das pessoas só está preocupada com a exatidão ou a proximidade do valor real. Olhando para o processo de medição com mais cuidado, você vai ver que há uma outra consideração importante: a precisão. Matt Anticole explica o que exatamente a precisão é e como ela pode nos ajudar a medir as coisas melhor.

Duração: ~3 min.

 12+  LEG 

Quão Grande É O Infinito?

Usando os fundamentos da teoria dos conjuntos, este vídeo explora o conceito delirante da “infinidade de infinitos” e como ele levou os matemáticos a concluirem que a própria matemática contém perguntas sem resposta: a hipótese do contínuo.

Duração: ~8 min.

 12+  LEG 

O Objeto Mais Redondo do Mundo

O objeto mais redondo do mundo ajuda a resolver o problema de medição mais antigo: como definir o quilograma.

Duração: ~12 min.

 12+  LEG 

Era Realmente Shakespeare Quem Escrevia Suas Obras?

Algumas pessoas questionam se Shakespeare realmente escreveu as obras que trazem seu nome ou mesmo se ele de fato existiu. Poderia ser verdade que o maior escritor da língua inglesa era tão fictício quanto suas peças? Natalya St. Clair e Aaron Williams mostram como uma ferramenta linguística chamada estilometria pode lançar luz sobre a resposta com o uso de métodos matemáticos e estatísticos.

Duração: ~4 min.

 12+  LEG 

Deve Se Confiar em Decisões Unânimes?

Imagine uma fila policial onde dez testemunhas são convidadas a identificar um ladrão de banco que elas viram fugindo da cena do crime. Se seis das testemunhas escolherem a mesma pessoa, há uma boa chance de que essa pessoa seja a culpada. E se todas as dez testemunhas apontarem para a mesma pessoa, você poderia pensar que não há então equívoco algum. Mas, às vezes, quanto mais próximo se está de um acordo unânime, menos confiável o resultado se torna. Derek Abbott explica o paradoxo da unanimidade.

Duração: ~4 min.

 12+  LEG 

A Matemática das Ilusões

Você já se deparou com uma imagem estranhamente desenhada de forma esticada na calçada, para então descobrir que ela parece incrivelmente realista se você observá-la exatamente do lugar certo? Estas ilusões usam uma técnica chamada anamorfose: um exemplo especial da arte da perspectiva onde os artistas representam vistas 3D em superfícies 2D. Então, como isso é feito? Fumiko Futamura traça a história e a matemática da perspectiva.

Duração: ~5 min.

 12+  LEG 

A Origem das Inúmeras Teorias da Conspiração

Por que podemos encontrar formas geométricas no céu noturno? Como podemos saber que pelo menos duas pessoas em Londres têm exatamente o mesmo número de cabelos na cabeça? E por que padrões podem ser encontrados em praticamente qualquer texto, mesmo nas letras do Vanilla Ice? PatrickJMT descreve a Teoria de Ramsey, que afirma que dado elementos suficientes em um conjunto ou estrutura, é garantido que algum padrão interessante entre eles irá emergir.

Duração: ~5 min.

 12+  LEG 

O Paradoxo do Valor

Imagine que você está em um game show e você pode escolher entre dois prêmios: um diamante … ou uma garrafa de água. É uma escolha fácil: os diamantes são mais valiosos. Mas, se for dada a mesma escolha quando você estiver desidratado no deserto, depois de vagar por dias, você escolheria diferente? Por quê? Os diamantes continuam sendo mais valiosos? Akshita Agarwal explica o paradoxo do valor.

Duração: ~4 min.

 12+  LEG 

A Ciência da Simetria

Quando você ouvir a palavra simetria, você pode pensar em geral de triângulos, borboletas ou mesmo bailarinas. Mas, definida cientificamente, a simetria é “uma transformação que deixa um objeto inalterado”. Hã? Colm Kelleher desenrola este termo abstrato e explica como as distintas simetrias dos animais podem nos dizer mais sobre eles e sobre nós mesmos.

Duração: ~5 min.

 12+  LEG 

O Que Acontece Quando Você “Chuta”?

Vai chover amanhã? Qual a probabilidade de seu time favorito ganhar o campeonato? Perguntas como estas são respondidas através da matemática da probabilidade. Assista a esta visualização artística para compreender quais as suas chances de passar em um teste se você não sabe nenhuma das respostas.

Duração: ~5 min.

 12+  LEG 

Como Colocar Rapidamente Livros em Ordem Alfabética?

Você está ajudando a biblioteca da sua escola. Você está no meio de uma tarde tranquila, quando, de repente, uma remessa de 1.280 livros chegam. Os livros estão alinhados, mas eles estão todos fora de ordem. Como você pode rapidamente ordernar os livros em ordem alfabética? Chand John dá a resposta, ilustrando como algoritmos ajudam bibliotecários e motores de busca a classificar informações de forma eficiente.

Duração: ~5 min.

 12+  LEG 

Por Que O Corpo Humano É Assimétrico?

A simetria está em toda parte na natureza. E costumamos associá-lo à beleza: uma folha perfeitamente moldada ou uma borboleta com padrões intrincados espelhados em cada asa. Mas acontece que a assimetria também é muito importante e mais comum do que você imagina. Leo Q. Wan nos leva ao corpo humano para mostrar como a assimetria biológica pode ser muito bonita.

Duração: ~4 min.

 12+  LEG 

Por Que As Companhias Aéreas Vendem Mais Bilhetes do Que Assentos?

Você já se sentou em um consultório médico durante horas, apesar de ter um compromisso? Tem um hotel recusando a sua reserva porque está cheio? Não havia lugar em um vôo que você pagou? Estes são todos os sintomas de overbooking, uma prática onde as empresas vendem ou reservam mais do que a sua capacidade. Então, por que eles fazem isso? Nina Klietsch explica a matemática por trás dessa prática frustrante.

Duração: ~5 min.

 12+  LEG 

Por Que O Sistema Métrico É Importante?

Durante a maior parte da história humana registrada, unidades como o peso de um grão ou o comprimento de uma mão não eram exatas e variavam de lugar para lugar. Agora, medidas consistentes são parte integrante de nossas vidas diárias e é difícil apreciar o quão isto é importante para a humanidade. Matt Anticole traça a história selvagem do sistema métrico.

Duração: ~5 min.

 12+  LEG 

Por Que O Tamanho da Sua Tela Importa?

Ver um filme em casa não é exatamente a mesma experiência que vê-lo em um cinema, mas por quê? Saiba como as alterações na relação às dimensões da tela afetam cada filme e por que sua televisão pode não estar mostrando toda a imagem.

Duração: ~3 min.

 12+  LEG 

O Que É Aleatório?

Será que o resultado do lançamento de uma moeda é realmente aleatório? E a previsão do tempo? O que é aleatório? O canal VSauce discute o assunto neste vídeo.

Duração: ~11 min.

 12+  LEG 

A Forma do Espaço

Qual é o tamanho do universo? É infinito? Qual é a sua forma? Estas e outras questões são ilustradas de maneira descontraída neste vídeo, um dos vencedores do Festival VIDEOMATH realizado no Congresso Internacional de Matemática em 1998.

Duração: ~11 min.

 12+  LEG 

CAOS

CAOS é um filme sobre matemática constituído de nove capítulos, de treze minutos cada um. Trata-se de um filme para todo público sobre sistemas dinâmicos, o efeito borboleta e a teoria do caos.

Duração: episódios de ~13 min. 

 15+ 

Vídeos da Coleção M3 da UNICAMP

A Coleção M³ Matemática Multimídia da UNICAMP oferece cerca de 180 programas áudio-visuais de dez minutos, ricos em representac¸o~es gráficas para dar suporte ao conteúdo mais matemático e com pequenos documentários que trazem informac¸ões interdisciplinares.

Duração: episódios de ~10 min.

 15+ 

O Mapa da Matemática

Todo o campo da matemática resumido em um único mapa! Isso mostra como matemática pura e matemática aplicada se relacionam entre si e todos os subtópicos de que são feitos.

Duração: 11 min.

 15+  LEG 

Skip to content